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An interaction U is called a completely analytical (CA) interaction, if it satisfies 
one of 12 given conditions formulated in terms of analyticity properties of the 
partition functions Zv(U ), or correlation decay, or truncated correlation 
bounds, or asymptotic behavior of in Zv(U), V---, oo. The 12 conditions are 
presented, together with part of the proof of their equivalence. The main result 
of the paper is that each condition is constructive in the following sense: instead 
of checking it in alI finite volumes V c  2 ", it is enough to consider only (a finite 
amount of) volumes with restricted size. In particular, the partition functions 
Zv(U+ U) for the complex perturbations U +  ~ of U do not vanish for all 
V c 2 "  and all. ~jT with II&r<~, provided this is true only for V with 
diam V<~C(a) and Ilg[I <~'  (but with e<e ' ) .  

KEY W O R D S :  Analyticity; correlation decay; Gibbs states; uniqueness; 
surgery method. 

1. I N T R O D U C T I O N  

"All happy families are alike, each unhappy family is unhappy in its own 
fashion." This observation from the opening lines of Leo Tolstoy Anna 
Karenin can well serve as an epigraph to the family of papers that includes 
the present one. (1'2/ The main goal of these paper is to demonstrate that, 
contrary to the richness of the behavior exhibited by Gibbs fields at low 
temperatures, their properties outside the phase transition region are quite 
uniform. In Ref. 1 we introduced nine properties (increased to 12 in Ref. 2) 
of a very natural kind, which are formulated in terms of bounds on the par- 
tition function in the complex region, or on semi-invariants, or on 
correlation decay, and it turned out a posteriori  that each of them defines 
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the same class of interactions (however, under an additional restriction; see 
Section2). This class is called the class of completely analytical (CA) 
potentials ("happy" ones). 

Each of the 12 properties of the CA potentials has the following struc- 
ture: one asks for a certain bound on the partition function or another 
quantity in a finite volume V to hold for each boundary condition. What  is 
important here is that the bound in question has to be uniform in V. Even 
in the case of finite-range interactions and finite spins, to which we shall 
restrict ourselves for simplicity, these conditions are not constructive, in the 
sense that one has to perform an infinite number of checks to verify them. 
The main goal of the present paper is to show the existence of constructive 
criteria of CA interactions. They are of the same type as the nonconstruc- 
tive ones, with the main difference that the corresponding bounds have to 
be checked only for the volumes V inside some cube, the size of which is 
explicitly estimated by certain functions of the constants, which enter the 
above bounds. These criteria are effective in the following sense: one can 
write down a computer program such that if a CA interaction is substituted 
into it, then it will check its complete analyticity in finite time (depending, 
of course, on the interaction). At the same time, for a nonanalytic interac- 
tion the program will never stop. So, using the language of algorithm 
theory, the set of CA interactions is enumerable (if one considers only the 
interactions with rational values), though not necessarily calculable. This 
enables one to prove the CA for a given interaction by the help of a com- 
puter. For another problem this possibility was discussed earlier. (3'4) 

In Section 2 we repeat the definitions of CA from Refs. 1 and 2. We 
omit the proofs and the discussions of Ref. 1, but for the benefit of the 
reader we reproduce those of Ref. 2, which are contained in Section 3. In 
Section 4 the constructive variants of CA conditions are given, while Sec- 
tions 5 and 6 contain the proofs, which are technically more involved than 
the proof of the equivalence of different nonconstructive criteria. 

Throughout  this paper the following notations will be used: 2 v is the 
v-dimensional lattice with points t = (t I ..... t~); dist(s, t) = maxi= 1 ...... [ s i -  til, 
s, t e Z~; 5 ~ is a finite single spin set; V, W, A .... c 7/~ are finite volumes; 
IX[ is the number of points in a finite set X; V c = 2 v \ V ;  
D , =  { te  7/v: -n<~ti<~n, i =  1,..., v} is a cube centered at the origin; t2v is 
the set of configurations on V: t2 v = { a v : V --+ 5 p }; 12 = t2z.; a, 6 e D are 
configurations; r v = a I v is the restriction of ~r e t2 or ~ e t? w, V c W, on V; 
a V l W a V 2 ~ O v ~ v 2  is such that ( a v l W G v 2 ) v = ~ v ,  for VI, V 2 ~ Z  ~, 
V1 ~ I/2 = ~ ,  a v, e 0 v,, i = 1, 2; and (? V = c~, V = { t ~ V ~' : dist(t, V) ~< r } for 
r > 0 .  
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2. THE CRITERIA FOR COMPLETE ANALYT IC ITY  

Let ~ = {A~c 2 ~, i =  1,..., k} be a finite collection of finite subsets of 
7/~ and A = A ( s g ) = { A c Z ~ : A = A + + t  for some i=i(A)=l , . . . , k ,  
t = t(A)e Z u}. We denote by 114 and 11c the real and the complex Banach 
spaces of translation-invariant interactions with support in A. An interac- 
tion U�9 (tl c) is thus a family U =  {UA(~) -  UA(~A), A ~Y-~, 111 < o% 

�9 f2 } such that 

UA(a) = UA+,(o+t) where ( a + t ) , = o ,  t (2.1) 

U~ - 0 unless A �9 A ( d )  (2.2) 

The norm of U is given by 

11UI] = sup I UA(~)] (2.3) 
A,ey 

The radius of interaction U is the number 

r = r ( U ) =  max diamA 
A:UA~O 

If A = {A c 7/v: diam A ~< r}, then the corresponding spaces 114 and 11c also 
will be denoted by 11r and 11c. Throughout  most of this section the families 
d and A will be fixed and so the corresponding index will be omitted, and 
we shall speak of the spaces !l and 11c with r = r(11) being the maximum 
radius of interactions U � 9  11. 

For any set 9.Ie11 we define its main component M ( ~ )  to be the 
maximal open connected subset of 9.1 that contains the zero interaction 
v~ {u o-0). 

We shall denote by 9,1= the set of interactions satisfying condition ~, 
where ~ denotes one of the 12 conditions to be formulated below 
(~ = Ia-Ic, IIa IIc, IIIa-IIId,  IVa, IVb). 

We now present the main result concerning the equivalence of different 
CA conditions. 

T h e o r e m  2.1. The main components M(gA~) coincide (~=Ia-IVb).  

This common main component is called the set of completely 
analytical potentials. 

We now start the formulation of our 12 conditions. 
Let ~ (:~c) be the set of all real (complex) interactions that satisfy 

(2.2), but not necessarily (2.1), with the norm (2.3). Of course, 11c f[ and 
11c c ~c. For  any U � 9  ~c, V~  2 v finite, and boundary condition 5 �9 f2 let 

Zv(U ] 5 ) =  ~ e x p [ - H v ( a v I  5)]  (2.4) 
~VEt'~V 
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where 

Hv(av I a)= ~ UA(aVW #v') (2.5) 
A : A c ~ V ~  

Condition la. Ue~x~ iff there exists ~ > 0  such that for all V, ff the 
(analytic) functions Zv(O [ #) are nonvanishing, provided 

U'~ Or(U) = { 0 e l l c  " /]U - OIl <e}  (2.6) 

(i.e., for all small enough translation-invariant complex perturbations 
of U). 

Condition lb. U E 9AIb iff there exist C < on and e > 0 such that for all 
V, # the (analytic) functions Zv(O]#) are nonvanishing, provided 

O~O~(U)= { O e ~  c : H U -  UII <e}  (2.7) 

and, moreover, 

Iln[Zv(01 I ff)/Zv(U2 I#)]k 

~< C [ (vw OV)c~ supp(O, - U2)[ (2.8) 

for all 01, U2 e Or(U), where, for q~ E ~c,  

supp q5 = Q) A 
A:~A~O 

Remark I. The function Zv(O] #) depends only on those UA(O'A) for 
which A m V-r By being holomorphic we mean the usual property of 
functions of several complex variables. 

Remark 2. The function ln Z v ( U l # )  is a uniquely defined 
holomorphic function, which coincides with the usual (real) logarithm for 
0 real. Its analytic continuation to Or(U) is possible and unique because 
the latter set is contractivle and Z I O~(U) r 0. 

Condition Ic. U~ 9A~c iff there exists ~ > 0 such that for all V and #, 
Zv(O[#) is nonvanishing for Oe  O,(U), and for any complex function (p 
on ~2, which is ~w-measurable for some W c  V, 

( ~ p ) ~  ~<C I[~pll (2.9) 

with II~oll =sup~ Iq~(a)l, where (~= C([W[, U, r, v, a, 15~t), uniformly in V. 
Here 

( o 
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is the expectation with respect to the conditional Gibbs measure in V with 
complex interaction, with 

QDv(av [ # ) = e x p [ -  H v ( a v  [ 6 ) ] / Z v ( U  [ 6) (2.10) 

where/~.(- ] �9 ) is defined by (2.5) with U instead of U. This measure is well- 
defined because the partition function does not vanish. In case U- is real, 
the bound (2.9) holds trivially. 

We recall now the definition of semi-invariants. Let {1 ..... {,, be ran- 
dom variables with values in 5 a and with the joint probability distribution 
q(x~,..., x,~), xt ~ 5P. The semi-invariant of order (k  I ,..., k i n )  , where k~ > O, is 
the number 

Okl + �9 + km 
in q0(zl ..... z,,) ]~,=:~ . . . . .  0 

Ok~z l . . .  ok,,Zm 
(2.11) 

where 

E 
x,,. . . ,  v m ~ .5 ~3 

exp(z lx!+  "-+zmx, , , )q(x~ ..... x,,,) (2.12) 

is the generating function, and z~ e C. 
Now let @I(O-AI) . . . . .  @m((TAm) be real functions, where Ai~  V are (not 

necessarily distinct) subsets; then, for Ue II, 

(~ik,,..., ,f,,k~\ 'k'm / Qv(" l~ )  

- r & a> 
0 k , +  " ' '  +kin 

- O < z . .  " Ok,,Zm [ln Zv((_7(zl ..... z,,) [ ~)] r~ . . . .  :,,=0 (2.13) 

where 

( / - ~ ( Z I  , ' " ,  Zm))A = LfA -~ Z ZiOi  ( 2 . 1 4 )  

t':At= A 

Condit ion Ila. U e ~ [ i I  a ifffor some constants C < o o  and ~ > 0  and 
for all V , d , m ,  01,...,4',,, kl  . . . . .  k m with [#JA ~<1 and A i e A ,  the function 
~Oik~,..., #j~-m I U-, V, # )  defined by (2.13) for real g'e~[ can be extended to 
a holomorphic function on O,:(U) with the following bound: 

I<~ik', . . . ,~2"l & V , # ) l < ~ k ~ ! . . . k ~ ! C  k ' + + k ~  (2.15) 
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Condition Hb. U E ~ [ I I b  iff there exists a constant  C < so such that  
for all V, #,rn, O, ..... Om, k~,...,km with IO~l ~<1 and A~eA 

I(0i~,,..., ~ I u, g , e ) l  
Kk~! ' "km!  C k ' +  +km y, 1--I ~0(1~1) (2.16) 

F ~  G ( A I , . . . , A m )  y e e ( F )  

where G(A~,..., Am) is the set of all trees F with m vertices identified with 
the sets A1,...,Am, E( / ' )  is the set of all bonds  7 = ( A ~ , A j ~ )  of F, 
17] = dist(A o Aj;), and finally (p(d)> 0 is a decreasing function on Z+  with 

Y, q~( l t l ) I t t~ -~<oo  (2.17) 
t E 2Z v 

Condition IIc. U e 9,lne iff for some constants  C < oQ and 6 > 0 and 
for all V,#,m, tPl,...,Om, k~,....,km with [~1 ~< 1, and A~eA 

<~k~!"'km! C k ' +  +k~ e x p [ - 6  d(A~ ..... Am)] (2.18) 

where 

d(Ax,..., Am)= min ]B] 
B : B u  (AI  ~ " "  u A m )  is c o n n e c t e d  

and the connectedness is meant  in the sense of the graph 7/~ with edges 
joining nearest  neighbors.  

For  A c V we define 

QVv.A(BI # ) =  ~ Q~(av I #), BC~2A (2.19) 
r  

Condition Ilia. U e 91m, iff for some constants  6 < 1 and p > 0 and 
- 1 _  -2 for s ~  t, 2 for all finite VcY_,  teSV,  # 1 , # 2 e l 2  with o , - a  s 

where 

Var(Qgv, su.p,v)(" I#~), Q~.~t.p,v)('{ 82) )< �89  IB(t, p, V)l i (2.20) 

B(t,p, V ) = { s e V : p < [ s - t l < ~ p + r } ,  r=r(U) (2.21) 

We denote by Var the var ia t ion distance: if QI ,  Q2 are probabi l i ty  
measures  on a finite set X, then 

Var(Q1,  Q2) = �89 Y'. [Ql(x)  - Q2(x)[ 
x E X  

2 In Ref. 1, the factor 1/2 was missed. 
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Condition I/Ib. 

989 

UE ~[IIIb iff for some decreasing function ~0(d) with 

lira ~o(d) d 2(~- 1)= 0 (2.22) 
d~oo 

for the same V, t, 61, 52 as in IIIa, and for any A c V, 

Var(Q~v.A( ]61), QUv, A(" 162) )~  2 q~(Is- t]) 
a'~// 

(2.23) 

Condition lilt. U e 0~iiic iff for some onstants K <  ~ any 7 > 0 and 
for the same V, A, t, if1, 52 as in IIIb 

Var(QvU, A(  [6~), Q~v.A( [ 62))---< K e x p [ - 7  dist(t, A)]  (2.24) 

Condition IIId. Ue 9Amd iff for some K <  ~ and 7 > 0, for the same 
V, A, t, 6 ~, 62 as in IIIb, and for all eA e ~2~ 

] Q~'~({CrA } [ 6~) <~Kexp[-vdis t ( t ,A)]  (2.25) 1 
Q~,A({GA} 162 ) 

Condition IVa. 
expansion holds: 

U~ q.llv, ifffor all V c Z  ~ and b.c. 6 e l 2  the following 

l nZv (U[6)=  ~ g(t, V, 5) (2.26) 
t ~ V  

where the function g ( ' , . , . )  of the triples t E Z  v, V c Z  ~, 6El2  has the 
following regularity properties: 

(i) g ( ' , - , ' )  is translation-invariant, i.e., for all s ~ ' ,  g(t, V, 5 ) =  
g(t+s,  V+s,  6+s). 

(ii) There exist constants C <  oe and c > 0  such that for all VI, V2, 
t e  V 1 n V2, 61 , 62~s 

Ig(t, VI, 61) - g(t, V2, 52)1 ~< Cexp[-cd i s t ( t ,  A)] (2.27) 

where 

Z~ = Z  J(6 1, V1, 5 2, g2) 

= [ ( V  1 k..) V 2 ) \ ( V  1 (~ V2) ] k..) {t• (V  l k..) V2) c o t 

Condition IVb. U e 9.1iv b iff for all V ~  y v and 6 E g2 the following 
expansion holds: 

lnZv(UI6-)= Z g(t, V, 6 )+g lV]  (2.28) 
t e J V  

822/46/5-6~ 13 
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where 

J V =  {rE V: dist(t, VC)= 1} 

the function ~( . , . , -  ) of the triples t e 2v, V c  Z v, # e f2, t e ciV has the 
same properties (i) and (ii) as the function g ( . , - , . )  from IVa, and 
g = ~?(U) is some constant. 

In Ref. 1 we have effectively described several classes of CA potentials; 
namely, the cases of high temperature, large chemical potential, low tem- 
perature with unique ground state, and one-dimensional systems. 

The main body of the above conditions are discussed in detail in 
Ref. 1, where references to earlier work can be found. In what follows we 
comment on the conditons of group IV, which are not to be found in 
Ref. 1, as well as on condition Ia, which now has a far more general form. 

Remark 3. The conditions of group IV arise naturally in statistical 
mechanics problems. The expansion (2.26) was obtained in Ref. 5 for the 
Ising ferromagnet at low and high temperatures with constant b.c. (see also 
Ref. 6). In the form (2.28) it was used in Ref. 7 (again with constant b.c.). 
The additional requirement that the expansion holds for all b.c. is very 
essential. For  example, in this generality it does not hold for the low-tem- 
perature Ising model. 

Remark 4. Applying IVb to the case of V a v-dimensional 
parallelelepiped with the smallest side l(V)--+ oo and with constant b.c. 
# e s one obtains the asymptotic expansion 

In Zv(U[ #)= ~ ~jSj+ O(e ~') 
i - 0 

where Sj is the total area of the j-dimensional faces of V (for j = 0 it is just 
2 v = the number of sites), while ~j, j = 0,..., v, c~ > 0, are some U-dependent 
constants (compare with Ref. 5). 

Remark 5. Comparing the conditions 21~, it might appear strange 
that except for condition Ia, all contain several constant parameters on the 
r.h.s, of the corresponding bounds. How can this be, if these conditions can 
be derived from Ia, which has no parameters? The answer is that these 
parameters are obtained from easy a priori estimates on the partition 
function: the upper bound in complex space and the lower bound4n  real 
space (see Proposition 3.3). 

Remark 6. The list of equivalent conditions can be further extended. 
For example, several conditions can be formulated only for translation- 
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invariant perturbations (e.g., IIa). Some conditions can be formulated in 
stronger terms: for example, in Ia, instead of a nonzero partition function, 
one may ask for the bound 

Iln zv(~l ~)l ~ c IvI 
to hold uniformly in V for all small, translation-invariant complex pertur- 
bations Ue Or~(U) (see Proposition 3.4). Again, it also can be formulated 
without the translation invariance condition. 

The proof of Theorem 2.1 goes by showing that the following system 
of implications holds: 

Ia IIa. IIIa IVa 

I b Ib IVb 

~ IIId 

(2.29) 

The arrow X ~  Y means that the condition Y holds for the main com- 
ponent of the interactions with the condition X. 

It is easy to see that one can arrive at any vertex of (2.29) from any 
other, so it is enough to prove only these implications. In what follows we 
shall not discuss the implications already proven in Ref. 1 or immediate 
ones. 3 In the next section we present the proofs that are not found in Ref. 1. 

3. T O W A R D  THE PROOF OF THEOREM 2.1 

Proposition 3.1. UE .~iiia:::~ U~:9~ic. 

Proof. It is easy to see that 

(~0)v~,~ = ~ q ) (~w)exp{ -  ~, UA(awW~wc)} 
~W~ ~2W A :A n V~ ,~, 

A n V ~ W  

z~  ~(~1 ~'wu ~ , )  
x Zv(U[#)  (3.1) 

3 Note  tha t  our  condi t ion  Ib differs s l ight ly  from tha t  of Ref. 1. C o n t r a r y  to wha t  was s ta ted  in 
Ref. 1, the impl ica t ions  from Ib being val id  were no t  immedia te .  
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Hence 

D z~\w(~lawu ~.A I(~0>vA ~<C I1~011 max (3.2) ~.,~,~.~ z.(~-I ~) 
for some C=C(W, U,r,v,e, I~1). 

We shall show that from Lemma 3.1 of Ref. 1, the conditions of which 
are satisfied for U e  9.1m, and U e  O~(U), it follows that 

z---~-~ ~ ~ c(I Wl, U,r,v,E, I~1) (3.3) 

which together with (3.2) proves (2.9). Because V~W can be obtained from 
V by subsequently deleting points of W c  V one by one I WI times, it is 
enough to consider the case W =  {t }, which leaves us with the bound 

z~I '}(Ul~ ' w ~ \ r  ~< c ( u ,  r, v, ~, fSI) (3.4) 
zv(ul~) 

But 
z~(~le)= ~ z~{,;(Dl~,ue~\{, 1) 

A : A ~ V = { t }  

and U is real; hence, it is enough to show that 

x Ez~/,~(~l a, u ~,,\~,/)] -1 

-Zv\{n(Ulv'uffz~\m)expl- ~ UA('C,UGZ"\{,})](InLCI~'I) 
Z~\ { , ) (UI~r ,  U az,'\ {,}) A :A ~ ~= {'/ 

(3.6) 

where C1 = Ca(U, r, v, e) ~ 0 for e ~ 0, gl = Ol(Z,, ~), t111I ~< 1. 
But it follows from Lemma 3.1 of Ref. 1, statement II, that the ratm 

Zv~I,I(UI z, u 6z,.\/,l ) _ (1 + C2~2) Zv\~,~(Ulz, u #z,.\ ~u) 
Z v x f n ( g ' l  a~ u # , ' " \m)  Zz\m(UI,r, u az~.\m) 

while for U- e O~(U) 

exp I - ~ U~(~, u 6z~\,)] 
A :A n v =  {t} 

=exp  [ -  ~ UA(Ttuo'z~,\t)](1-FC3~3) 
A : A  c5 V =  {t} 

(3.7) 



Completely Analytical Interactions 993 

where C2, C3, ~2, and ~3 have the same properties as  C 1 and ~1 ;  hence, 
(3.6) follows. 

Proposition 3.2. U E  -~ic =:> U ~  ~[ib , 

Proof. Let D1 and U2 be two perturbations of U. Consider the 
sequence of perturbations r  O~(U) of U, i =  1,..., k, defined as follows: 

(i) 0'I~= 0~I~, 0~[~: 0~I~ (3.8) 
(ii) For some A~, . . . ,Ak_I r  the statement ( 0  ~+~- r ~ 0 

implies A = A g, i = 1,..., k -  1. 

(iii) k is the smallest number satisfying (i) and (ii). 

In this case clearly 

k ~< C1 ](Vw 0V) c~ supp(O~ - 0:)I (3.9) 

where C~ = C~(v, r). To prove (2.8), it is enough to combine (3.9) with the 
bound 

lln[Zv(O~l 6)/Zv(O'+~l 6)]1 ~< C2 (3.10) 

where C2 = C2(e, U, r, v). To show (3.10), let us consider the perturbation 
U ' =  tO~+ (1 - t ) r  ~+~ and the function 

F(t)=lnEZv(r162 0~<t~<l (3. l l)  

One has 

F( 1 ) = In [ Z  v( 0~I # ) / z  v( ~i + 1  [ ~) ] F(0)=0, (3.12) 

F ' ( t ) =  < ( 0  i + ' -  fri~ ,,o, (3.13) ~" / A i /  V, ff 

The interaction O'eO~(U) for all t z [ 0 ,  1]; hence, from (2.9) and the 
bound IA~I ~< r v we have 

IF'(t)<~eC(r v, U, r, v, e, 15PI) (3.14) 

which, together with (3.12), proves (3.10) and (2.8). 

Proposition 3.3. UeM(gi~a)~ Uzgimd. 

First we prove the following: 

l . e m m a  3.1. Suppose the function ~o(z) is analytic in the disk 
{ I z [ < l + 6 } ,  6 > 0 ,  with [q~(z)[~<C1 for [z[~<l and ~0(0) is real, 
q~(0)> ~ >0.  Then, for some C2= C2(CI, ~), E=E(CI ,  ~), 0 < E <  1, 

~o(z) # 0  for Iz[ ~< E 
(3.15) 

[ln ~p(z)[ ~< C 2 for Iz[<~g 

(Here we choose the branch of the log in such a way that the log is real.) 
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Proof of the Lemma. 

I~p'(z)l~C,(1-1zl)-' for 

Integrating along the segment [0, z], we have 

if 

For this region also 

From the Cauchy formula it follows that 

[zi < 1 (3.16) 

](0(z)l > e - C, in l - l z l~  > 2 (3.17) 

Izl < E =  1 - exp( -c (2C~)  (3.18) 

In r = f" q/(u) du + In q~(0) (3.19) 
Jo ~(u) 

where the integral is taken along the segment [0, z]. Together with (3.16) 
and (3.17), this implies that for ]zl < E 

[in q~(z)[ ~< 1 + Iln ~0(0)1 

and (3.15) follows with 

C2= 1 + max{jln el, [ln CLL} (3.20) 

which finishes the proof of the lemma. 
To prove Proposition 3.3, define for U-e Or~(U) the interaction U(z)= 

U + z ( ~ 7 - U )  and note that for any Vc77 v and # e f 2  the function 

~o(z) = Z v( O(z) l #) ~/I < (3.21) 

is analytic for [zl ~< 1. (This is the only place where we need the partition 
function to be nonzero.) Let 

~ =  sup IUa(aa)[ (3.22) 
A , ~  A c ~ A  

Then for some ~ = K(v, r) 

[Zv(CJI #)l/t vl I ~< exp[~c(~ + ~ + In 15~1 )] 

provided CJeOr~(U). This bound holds, in particular, for ~ = U ( z ) ,  
0~< [zl ~< 1. Because U is real, we have also 

Zv(  UI 6) 1/Ivl >~ e x p ( -  ~cfi) 

Hence, we can apply to (p(z) Lemma 3.1, which gives the following result: 
for any V c ~  v, #e l2 ,  and ~s  

Iln Zv(Ul#) l  ~< [1 + x(~i+ e + l n  15~ Igl (3.23) 
provided 

~ '= (1 - exp{ - e x p [  -~r + ~ + In 15~t )] })e (3.24) 
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The rest of the proof follows identically the same lines as that of 
Proposition 4.3 of Ref. 1. 

Proposit ion 3.4. U~M(9.1na)~ u~gAIv .. 

Proof. Let us join U with the zero interaction U ~ by the smooth path 
U 'e  M(92~,) in the manner discussed in Section 4 of Ref. 1, U ' =  U. Then 

l nZv (U[5)=  [ lnZv(U'16)];d t+ IVI In lYl (3.25) 

But 

t ! - [lnZv(U'16)]~= - 2 (Ua)~(~vuaw. 
A : A c ~  V r  ~ V,# 

where all the function [U~,(Ga)]; are uniformly bounded in t. Let 

g(s, V , # ) =  - dt 7-;7(US);(~vU6w~) +lnlSel  (3.26) 
A :  A / V,#  

Clearly, the representation (2.26) holds. Now, from (4.30) of Ref. 1 the 
bound (2.27) follows immediately. 

Proposit ion 3.5. u E g A ~ w ~  UEgfmd. 

Proof. One easily checks that 

Q vU((0A) ] 6 ' ) 
in 

QvU((~A)l 62 ) 

= h~ Z~\~(UI 6~ u ~)/Z~(UI 6 I) 
ZV\A(U] -2 ~ ,~ u ~ ~ ) / z ~ , (  u l  6 2) 

]~(s, V~A, 6 ~) - ~,(s, V\A, 62)] 
s ~ g ( V \ A ) - - ~ ( V )  

+ 2 [l~(s, V\A, f l l -~ , ( s ,  V, 6/)1 
s e  & v )  n ( V ~ A ) :  

d i s t ( s , t )  ~< l / 2 d i s t ( A , t )  

+ ]~(s, V\A, 62) - ~(s, V, 62)1 ] 

+ ~ LI~(S, V\A,#I) - -~(s ,  V\A, 62)] 
s ~ c~( VJ ~ ( V \ A  ): 

d i s t ( s , t )  > 1/2d is t (A , t )  

+ Ig(s, v, 611-  g(s, v, 62)1] 

+ ~ I~(s, v,e')-~a(s, v, g2)t 
s~a(V)mA 
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-1 -2 for s r  one has by IVb a bound of the type Because a s = a  s 
C' exp[-�89 A)] for each term of each sum, with C ' =  C'(C, c, v); 
hence IIId follows. 

Proposition 3.6. U E~ 9.~iva =:> U ~ .~ lVb . 

Proof. The limit 

-= lim g( t, V, ~ ) 
dist(t, V c) ~ 

exists and does not depend on ~, because of (2.26). For any s ~ V denote by 
~(s)  the subset of points t of JV such that 

dist(s, t ) =  min dist(s, ~) 
z ~ J V  

and define 

s ~  V : t ~ 6 ~ ( s )  

The relation (2.28) evidently holds. A bound of the type (2.27) for ~( -, . ,- ) 
can be easily obtained from that for g ( . ,  ' ,  . )  (with the same c but with 
other C; compare with preceding Proposition 3.5 or with Ref. 7, Sect. 3). 

Remark. We use the opportunity to fill a small gap in the proof of 
Proposition 4.3 in Ref. 1. Instead of the discussion after the bound (4.28), 
one has to reason as follows. From (4.28) of Ref. 1 and the estimates on I~'1 
and I~ ~'1 after it, one infers that 

QvuA({O'A}I~I) l l<~KIA[2exp[-Tdist(t ,A) ] (3.27) 
Q~,A( {aA } l e 2) 

for all y < 7 ( U )  and some K = K ( y ) <  ~ .  Defining A'=A' (A)  to be 

A'--  {s6 V: dist(t, A)<~ I t - s l  < dist(t, A ) + r }  (3.28) 

and using an analog of (4.27) of Ref. 1, one has 

QV, A({a A} [51) U QV'A'({aA'}161) 1 (3.29) max ~ ( 1 ~<max u -- 
~, QV, A {aA}162) ~A' QV, A,({aA'}{62) 

Hence, to prove (2.25), one can use (3.27) with A' instead of A. But 
IA'[<~C(dist(t,A)) v with some C=C(r,v),  hence (2.25) follows from 
(3.27). 
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4. THE C O N S T R U C T I V E  CA C O N D I T I O N S  

As was already mentioned, each of the 12 conditions has its construc- 
tive counterpart. We shall present only three-- the most characteristic. (In 
what follows, the parameters v and r are fixed, and usually omitted.) 

. . . .  tr . C) if llUl] < C and for all Constructive Condition la. U~ 91~a (d, e, 
V c  7/v with diam V~< d the function Zv(~Jl ~) is nonzero inside o r ( u )  for 
all b.c. & 

c o n s t r  . Constructive Condition lib. U e91nb (d, (p, C) with function (0, 
satisfying (2.17) if the bound (2.16) holds for all volumes V with 
diam V<~ d. 

Constructive Condition Illc. U~ 91~~ K, 7) if the bound (2.24) 
holds for all volumes V with diam V~< d. 

In the same manner the other conditions of Section 2 are made con- 
structive. It is convenient to have a unique notation g= for the set of con- 

c o n s t r  , stants of the condition 91= (d, .). Thus, g= denotes 

e ,C  for ~ = I a ,  Ib, IIa 

e ,C  for c~=Ic 

~0('), C for ~ = I I b  

6, C for c~=IIc 

c~, p for c~ = I I I a  

(o(.)  for c~=IIIb 

7, K for c~ = IIIc, IIId 

c , C  for ~=IVa ,  IVb 

The corresponding condition will henceforth be denoted by 
c o n s t r  . c o n s t r  91= (d, g=) or simply 9I= (d). 

T h e o r e m  4.1. For each c~=Ia,...,IVb there exists a function 
do=d;(g=) such that M(91~~ coinsides with the set of CA 
interactions. 

It is possible to give explicit expressions for the functions do. For 
example, for c~ =II Ic ,  

d l I ' c ( K ,  y )  

= m i n  d : [ ( K + l ) ( d + 2 r + l ) V ] 2 ~ + 3 e x p ( - y d / 3 v ) < - z  - (4.1) 
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where min is taken over all integers d >  6v(r + 1) that are multiples of 3v. 
However, the bound (4.1) does not have to be taken too seriously. In 
deciding between a more accurate bound and a simpler proof, we chose the 
latter, and so the bound (4.1) is greatly excessive. 

Theorem 4.1 follows immediately from the following two statements. 

Proposit ion 4.1. The set M(~l~'l~Str(do)), with d o given by (4.1), 
consists of CA interactions. 

Proposition 4.2. Suppose that for ~1, :%=Ia  ..... IVb there is an 
arrow, 9A~, ~ ~1~2 , in (2.29). Then there exists a function g~2(g~l) such that 
for all d, g=~ 

V~ M(91, . . . .  cq tr(d,, g=,)) ~ UE 91~2~s"r(d, g=2(gcq)) 

The proof of Proposition 4.1 is given below in Sections 5 and 6. The 
proof of Proposition 4.2 follows quite easily using Ref. 1 and Section 3 of 
this paper. One has only to check that when deriving some property of the 
field in a volume V, one has used only the information confined to this V. 
Going over these proofs, one can also obtain explicit formulas for the 
functions g~2 (g=l)- If the function d;2(g~2 ) of Theorem4.1 is already 
known, one can take 

d~)l( g~ ) = d;2( g~( g=, )) (4.2) 

From (4.1) and (4.2) it is possible to determine all the functions d; for the 
c o n s t r  conditions 9.1= . 

5. THE STRATEGY OF THE PROOF OF PROPOSITON 4.1, OR: 
HOW TO CLEAN A BIG TABLE WITH A SMAI .  L DUSTER? 

Let the b.c. #1, # 2 e l  2 differ only at tec~V. We want to show that the 
conditional distributions u . u . QV, A(, [~1) and QV.A( [# 2) are exponentially 
close [as dist(t, A ) ~  oo] for all A c V, all Vc7/~, provided it is known 
only for those volumes V whose diameter is less than or equal to do. To 
this end, we use the surgery method introduced in Ref. 8, which has since 
been intensively used (see, e.g., Refs. 3 and 9). Its main ideas are the 
following. 

Let p1, p2 be two probability distributions on f2 v, Vc2~ v. The dis- 
tribution P on f2vX f2 v is called a joint distribution for PI,  P:  if 

4 ~  (5.1) 
Z P(o~, 02) = el(oS/) 

o - 2 ~  ~2 V 
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We say that the pair P~, p2 is f-close, where f is a real valued function 
on V, iff there is a joint distribution P for P~, p2 such that 

= p,( v, aZv) P(a~v, a2v)<~ffs), s e V  (5.2) 
1 2 

C;V, a V G  ff2V 

where for all V c Z ~', s c V, alv , a2 ~ Y2 v 

{ cr I 1, a, # % (5.3) 
1 2 

The following simple statement explains the connection between 
f-closeness and variation distance. 

kemma 5.1. L e t A c V a n d  

PiA(aA) = ~, P'(aA U aV\A) (5.4) 
aV~A ~ ~2I~A 

be the restriction of U onto A. 

(i) If p1, p2 are f-close, then 

Var(P~, P2A) <~ ~ f ( s )  
s~A 

(ii) Any pair P~, p2 is )C-close with 

fVar(P~,  p2), s e A 
f ( s )  = ( 1, ~ ~ V \ A  

Proof. (i) Let 

(5.5) 

)~s, S c f 2 A ,  be the indicator of the set {ave f2v :  
aA e S}. One can easily follow the following sequence of inequalities: 

Var(P~, P ] ) =  max IP~A(S)- P2A(S)I 
S ~ .C2 A 

= m a x  ~ )~s(av)pl(av)  - ~ )~s(av)P2(av) 
S ~ t ' 2 A  G V E .Q V  rYV~ff2V 

= max ~ [Zs(a~) - )~s(a2) ]  P(ab,  a 2) 
S ~ ff2 A 1 2 

a v ,  O'v~ ff2V 

~< max ~ I z s ( ~ ) - z s ( ~ ) l  P ( ~ , 4 )  
S C - Q A  t 2 

OV, CrVE g2A 

= ~ (ps)e<~ ~ f ( s )  
s e A  s ~ - A  

which proves (i). 
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(ii) Let 

QA(a A) = min(P~(aA), P~(aA)) 
PiA(a A) = piA(a A) -- QA(a A) 

Then 

QA(aA)= 1 -  Var(P~A, P~) (5.6) 
ffA E ~A 

Consider now the joint distribution for the pair P~A, P2A, given by the for- 
mula 

fQA(aA), 
P A(a~, a 2) = (/31(a~) P2A(a2 )/Var(P1 A, PZA), 

Let Pi(aV\Alffa) be the conditional distributions on V\A subject to the 
condition o A o n  A,  corresponding to P( We can define the joint dis- 
tribution P for p1, p2 by 

p(GIv, (72) = pA(G1, if2) pI(o.I\A I G1) p2(172\A [0.2) 

One can easily estimate now that 

fVar(P1A, P2A) for s e A  
(ps)p <. for se V\A 

which proves (ii). 
It is possible now to reformulate the main Proposition 4.1 in terms of 

closeness. We define a set ~[(d; K, 7) of interactions to consist of all poten- 
tials U such that for all Vc7/v with diam V~<d, all A c V, #1, #2eg 2 the 
pair Q~(-1#1), Q~(. I# 2) is q)Al,~2(') close, with 

A t K ~ exp[--ydist(t 'A)]P'(#l '#2) for s e A  
~%~ ,2(s) = , ~ v  (5.7) 

( 1 for sE V\A 

constr . P r o p o s i t i o n  5.2. U e ~ [ i i i c  (d,K, 7 ) ~ U e ~ ( d ; K ,  7). 

Proof. L e t  { t 1 ,..., tn } be the sequence of all points of t e c3 V where the 
b.c. #1, 52 differ. Consider then the sequence of b.c. gi, i = 0 ..... n, given by 

=/= ~'#~ for t e { t l  ..... ti} 
a, (#~ forother t - s  
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From the triangle inequality it follows that 

Var(Q~ . v . V.A( ICY~), QV, A(1~2)) 

~< ~ Var(OUA('lo~-~), QUA(. ~)) 
i = 1  

where we have used that ~ tJ ( QV, A(.I~I)=Qv, A .16~). Because the b.c. ~i-1, ~ 
differ exactly in one point t~, it follows from (2.24) that 

Var(Q W,A(" 1~7 ~- ~), Qu, A (" I g~)) ~< K e x p [  - ~  dist(t~, A)] 

The bound (5.7) follows now from statement (ii) of Lemma 5.1. 
The above proposition enables us to use for the proof of Proposi- 

tion 4.1 the condition U e  ~l(do; L, 7) instead of U e  9.1~}~t~(d0; L, 7). 
Section 6 deals with the proof of the following (nontrivial) statement, 

which in fact contains all the difficult points of our problem. 

Proposit ion 5.3. If Ue~(do;L, 7), where d o is given by (4.1), 
then for some constants L' and 7' and for all volumes V c 7/u, all to e •V, 
and all pairs 6 ~, 62ef2 of boundary conditions that differ only at t 0, the 
pair QAC'( �9 I ffx), Q~(. 16 Z) is f-close with 

f(s) = L' exp( - 7 '  I s -  t0l) (5.8) 

Proposition 4.1 clearly follows from Proposition5.3. Indeed, from 
(5.8) and part (i) of Lemma 5.1 it follows that 

Var(QvUA(.l~l), v -2 Qv, A(-I ~r )) 

~< ~ L' e x p [ - 7 '  dist(to, s)] 
s ~ A  

~< ~ L' e x p ( - ~ '  lul)~L"exp[-~"dist(to, A)] (1.9) 
u~Z~,lul ~> dis t ( t0 ,A ) 

where 0 < 7 " < 7 '  and the constant L"=L"(L', 7', 7"). Hence, Ue~lni  ~. 
cons t r  From Proposition 5.2 it follows now that M(~tm~ (do)) c g.Im~, so the 

statement of Proposition 4.1 follows from the main Theorem 2.1. 
The proof of Proposition 5.3 is more involved, so we begin with the 

main ideas. 
For any volume Wwith diam W<~do, any A ~ W, let us fix a joint dis- 

tribution A ~ ~ 1 Pw(aw, a2wl~,~ ~) for the pair 6~), u 2 Qw(awI Qw(~rwl#2), 
corresponding to the pair ~Y~, if2 ~ s of b.c., such that 

( p s ) ~ ( . , l ~ , ~ 2 ~  << " A 
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where A ~Oe~ e2 is defined in (5.7) if ffl va ~2, while for the pair of coincident b.c. 
ff~ = if2 = ff the joint distribution P~v(', "1 a, a) lies on the diagonal a~v = a2w . 
Such a system exists in the case Us~l(d0;  L. 7)- We call the volumes W 
with diam W~< do patterns, and the distributions P~v pattern distributions. 

The following is the main surgery procedure applied to the joint dis- 
tribution in arbitrarily large volume. It consists of a surgery in a fixed pat- 
tern, and it results in f-closeness with "better" [-= smaller (but not 
everywhere) ] f 

k e m m a  5.4. (Elementary Surgery Lemma). 
Let W be a pattern, A c W, and P~v(', 'lff~, if2) be a pattern dis- 

tribution. Suppose that W c  V, ff], if2 s ~,  and Hv(', '] ff~, if2) is some joint 
distribution for Q~(. I ffl), Q~(-1if2). Let 

/~V(0. . I  0.21 ~ 1  (~2) __ A 1 -1 2 -2 _Pw(aw  ' a21 1 G v \ w  k3 ~7(v\w)~, ff v \ w  U (7 (V \WT)  

• H v ,  v \ 1 2 w(a v\w ' if], a~\wl #% (5.10) 

where 

1 2 -1  (~2 gv, v\w(av\w, ~ v U a ~ v i a  l, ) f f V \ W I O .  , ~ 2 ) =  E HV(T21W t...) O'V\W,1 "~ 
1 2 ~Cw, rwE ~2w 

is the restriction of Hv  on V\W. Then Lr v is also a joint distribution for 
Q~(. i~), QV(. l e2). Moreover, if 

(p~)riv<<.f(u), us  V (5.! I) 

then 

( L ~ f(s) exp[-Tdist(s ,A)],  u s a  

(p,}ev<<. ) , Sw f ( s ) ,  us  W\A (5.12) 

\ f(u), u s V\  W 

if we define for s s V ~' 

-1 -2 1, as ~ ~s 
f ( s ) =  0, a , = a ,  -1 -2 

and where ( P , } n v  and (Pu}nv are shorthand for 

(pu}na.,.l~l,~2) and { pu )/~-v(.,. [ #1,#2) 

Proof. T h a t / 7  v is a joint distribution follows from the fact that p A  
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and H v  are, and from the definition of Gibbs field. To prove (5.12), one 
has to observe that for u s A if follows from (5.9), (5.7), and (5.11) that 

(P~)Bv  = 2 , 2 Ilv, v\ w(~ v\w, a v\w t 61, 62) 
[ 2 

~V\W,~V~W 

• (p,,)pAw(. "l@.w~gv.w.c~ 2 ue 2 , ' \ t \ ~, V \W (VkW)CJ 

llv, v\w(r Cv\w I 61, 6 2) 
CV\W, a V \ W  

x ~ e x p [ - y  dist(s, A)] 1 2 
s c O W c ~  V 

e x p [ - y  dist(s, A)] p,(6 ~, 62)~ + 
s ~ c ~ W ~  V c J 

= L {  ~ e x p [ - y d i s t ( s , A ) ] ( p s } r z  ~ 
s ~ a W c ~  V ) 

+ Z e x p [ - y  dist(s, A)] f ( s ) I  
s E O W c ~  V c 

<~L ~ f ( s ) e x p [ - y d i s t ( s , A ) ]  
s ~ O W  

which proves the first line in (5.12). Going on to the case u s  W \ A  and 
using the fact that pattern distribution lies on the diagonal for coincident 
b.c., one has for O'(?W~-I V c-- aOW~-2 V' [otherwise the second line in (5.12) is 
trivial] 

H V ,  V \  W ( O ' V \  W ,  a V \  W I 61, 62) 
1 2 

O'v\w,O'v~w~ Y 2 v \ w  
1 2 

r  

i Hv, v \w(av \w,  61, ~v\w[ 62) 
1 2 

~ v \ w , o v ~ w  s ~  V n  ~ W  

= Z (Ps}nv  <~ Z f ( s )  
s ~ O W c ~  V s ~  W 

Finally, it follows from the Definition (5.10) that for us  V~W 

( p ~ } o v =  (p.} .~<<.f(u)  

which finishes the proof of Lemma 5.4. 
The following is the idea of the proof of Lemma 5.3, which is trans- 

formed into the proof in the next section. 
From Lemma 5.4 one knows that the result of an elementary surgery 
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4: 

Fig. 1. The initial dirt density. 

of the measure Hv is some new measure / )v ,  which is somehow <'better" in 
A c W, is the same outside W, but may be "worse" in W\A. To form a 
clear intuitive picture about what is going on, use Aizenman's description 
of the process, who proposed to view the values of the function f ( . )  as the 
amount of "dirt" at each point. Then the surgery in the pattern W ~ V can 
be viewed as rubbing on W with a duster. This cleaning goes on, however, 
in a masculine fashion, i.e., not very carefully, with the result that the 
amount of dirt decreases only in the center of W, with the dirt being 
removed to the boundary of W. Moreover, it can freely be that the total 
amount of dirt even increases! In any case, the center of W becomes 

/ _ / _ 4 _ z  / / / / 

r  " 

Fig. 2. Dirt distribution after first cleaning. 
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.• 

Fig. 3. The positions of the second cleanings. 

cleaner, while the dirt lies near the boundary, its amount being propor- 
tional to that in the vicinity of #W. So, to clean the whole table one can 
proceed as indicated in Figs. 1 8, where the two-dimensional case is con- 
sidered, the shading representing the amount of dirt. First we cover all the 
table V1 with two-dimensional patterns (Fig. 1) and perform cleaning in 
each of them. (To be more precise, one has to arrange the patterns in such 
a way that their mutual distances are greater than r. But in this section we 
shall ignore these details.) After this the dirt is shifted to the boundaries of 
the patterns (Fig. 2). Next, one has to cover the pieces of these boundaries 

Fig. 4. The result of the second cleaning, 

822/46/5-6-14 
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Fig. 5. Magnified piece of Fig. 4. 

by "almost one-dimensional" patterns, which have to be disjoint (see 
Fig. 3). The only piece not covered is that in the vicinity of the point t, 
where the outer dirt is situated. The result of the second cleaning is shown 
in Fig. 4, while Fig. 5 contains a magnified piece of Fig. 4, which shows the 
dirt distribution in the vicinity of the common certer of four two-dimen- 
sional patterns. The additional dirt, created after second cleaning, is easily 
seen. Finally, Fig. 6 shows the position of "almost zero-dimensional" pat- 
terns. After cleaning inside them the general situation is considerably 
imporved, and the table is cleaneer everywhere except in the neigborhood 
of the point t. One may summarize as follows: after each cleaning the 
"dimension" of the exceptionally dirty parts is reduced by one, while its 

P 
L 

- - I  [--[ 1 
Fig. 6. The positions of the third cleaning. 
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/ / 
S z 
/ 5 / 2 / / / ' / " / f  S 

t 
Figure 7 

thickness grows, until at the last step they disappear completely except in 
the vicinity of the point t. 

One would like to iterate the above scheme. But it will not give any 
result in the patterns adjacent to the point t. So one has to repeat the 
procedure outside these patterns, i.e., to consider "the table" 
V2 = ~rl\ U W* (see Fig. 7). The situation on the t ab le  ~r 2 is of the same 
type as that for 12 I, the boundary of 12 2 being clean outside the dashed 
region. What is important here is that the height of dirt on the boundary of 
12 2 is in constant times smaller than that for I21, provided the patterns W 
are big enough. 

Iterating this procedure, i.e., applying it on the nth step to the volume 
12,, (see Fig. 8), one gets the desired result. 

6. THE PROOF OF L E M M A  5.3 

We are left with the proof of Lemma 5.3, and we shall follow the plan 
outlined in the previous section. We begin with a purely analytic refor- 
mulation of the result sought, so in this section there will be no probability. 

Figure 8 
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Let V, teOV be fixed. Denote by ~ - = S ( V ,  t, do, K, 7) the class of 
nonnegative functions f =  {f(s), s e V} with the properties: 

(i) The identity function is in ~ .  

(ii) I f f e ~ -  and 

jT(s)>>.min(f(s), 1), sE V (6.1) 

then f ~ ~ .  

(iii) I f f e Y  and A c W c V  are volumes with d iamW~<d o , then 
also f =  Sw.AfE ~, where 

I K ~ f(s) exp[-Tdist(s,A)] 
s ~ W n  V 

+ Z w exp [ - 7 dist(t, A ) ], u ~ A 

f ( u ) =  ~ f(s)+ zw, uE W\A (6.2) 
s E O W n  V 

f(u), u~ VkW 

Here ~ w = 1 for t e c3 W, ~ w = 0 otherwise. 
The connection between this definition and the preceding section is 

given by the following: 

I . emma  6.1. Let UE~(do;  K, 7), where do is given by (4.1). Sup- 
pose that b.c. 61,~2 are given, with ff~=ff2 for s#t. Then the pair 
Q~(. i ff~), Q~(.j if2) of conditional Gibbs distributions is f-close for any 
fe~(V,t ,  do, K, 7). 

ProoL To show that Q~(. 151), QUv(.162 ) are 1-close, it is enough to 
apply statement (ii) of Lemma 5.1 with A = ~ .  To see that f-closeness 
implies f-closeness [see (6.1)], one uses the definition (5.2) and the fact 
that (Ps)e is always less than 1. The last statement, that f-closeness 
implies f-closeness [see (6.2)] is a reformulation of the Elementary 
Surgery Lemma 5.4. 

In what follows, we shall also call surgery the transformation f ~ f = 
Sw, Af. Instead of Proposition 5.3 we shall prove the following. 

Proposition 6.2. For any finite V the function 

f(s) = K' e x p [ - 7 '  dist(t, s)] (6.3) 

is in ~ ,  where 

K'=2B, 7 '=  [2(do+2r  + I)] ~ (6.4) 
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with do as in (4.1) and with 

B =  [(K+ 1)(do+ 2r + 1)v] v+l 

One sees easily that Proposition6.2 and Lemma6.1 
Proposition 5.3. 

The following is the formalization of the sequence 
described at the end of Section 5. 

(6.5) 

together imply 

of surgeries 

Lemma 6.3. 

Then ~ e ~ ,  where 

~(s) = 

Let 9 c  V, and suppose that (p E ~ ,  with 

(p(s) ~< c ~< 1, s E 9  

~(s), 

Bc, 

bc, 

s e  v \ 9  

s e V, dist(s, ( V\ V) u t) < D 

s E V, dist(s, ( V\ V) w t) >~ D 

(6.6) 

(6.7) 

where B is as in (6.5), d o as in (4.1), 

b = vB2K(do + 2r + 1 )v exp( -~ do/3V) (6.8) 

D = 2 ( d o + Z r +  1) (6.9) 

The proof of Lemma 6.3 is somewhat lengthy and we postpone it, 
while we now explain that Proposition 6.2, and hence Theorem 4, follow 
from it. Let T ;  be the operator taking ~0 into ~b, defined by (6.7). Consider 
the sequence of volumes VI = V, V2,..., Vn, where 

Vi+ 1 = {sE Vi: dist(s, (V\Vi) u t)>>.D} (6.10) 

and where n is the smallest value of i with Vi+l empty. Applying the 
oeprators Tvi to the function ~01(s)~ 1 e Y [see (i) of the definition of the 
class ~ ] ,  we have a sequence 

(pi+l=Twiq)i, i = 1 , 2  ..... n - 1  (6.11) 

which is in ~ because of Lemma 6.3. From (6.7) it follows that 

qo~(s)<~Bb i 1 for t ~  V i \ V i +  1 (6.12) 

We choose the number do in such a way that it ensures that b is less than 
1/2, hence the function q~ decays exponentially. 
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Using (6.12) and the definitions (6.4)-(6.5), one is easily convinced 
that the function f of (6.3) obeys 

f(s) >1 (o,(s) = rain {~o,(s), 1 } 

Hence Proposition 6.2 follows from the definition of ~ .  

Proof of Lemma 6.3. This will consist of consecutive applications to 
the function ~o, obeying (6.6), of the operators SW.A defined in (6.2), along 
the lines of Section 5. Define the operator 

where ~Kk=~Kk(V, V,t)={Wk,i} are the pattern families to be defined, 
Ak,i c Wk,i. We shall show that 

S~0  ~< 0 (6.14) 

with 0 from (6.7), which, according to the definition of the class ~ ,  is 
enough for Lemma 6.3 to hold, 

The definitions of Wk,i c I2 and Ak, i = Wk.~ were outlined in Section 5. 
We begin by first stating their geometric properties that are crucial for our 
proof, their presentation is postponed until the end of this section. There 
are five such properties. 

P1. For all k, Wk, i ~ ~k ,  

Wk,i c I 2, diam Wk.i ~< do, 

awk,,n [ ( v \ ~ )  ~ t ]  = 

where d o is as in (4.1). 

P2. For all k = 0,..., v, i 1 4: i2, 

dist( Wk,i,, Wk,~2) > r (6.15) 

Let us define the volumes P~, k = 0,..., v + 1, by the recursion 

~ k = [  12k+ , / ?  (Wk,i\Ak.~,]W( ? Ak,O (6.16) 

P3. The following inclusion holds: 

{s E V: dist(s, ( V\ I~) w t) > D } = Vo (6.17) 

where D is defined in (6:9). 
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P4. For all k =  1,..., v (except k=0! ) ,  all i, 

dist(Ak,, Wek,i\Vk+le ~ ) > do/3V 

P5. For all i 

(6.18) 

~Wo,i C PI, Ao,i= Wo,i 

We now shall demonstrate (6.14) provided the system of patterns with 
P1-P5 exists. Note that in general the operator Se is not well-defined by 
(6.13), because the operators SW, A generally do not commute. But in our 
case the situation is different: according to P2, the operators SWk.,.Ak.~ and 
SWkj, Akj do commut for the same values of k, while their order for different 
k is as prescribed by (6.13): one begins with v-dimensional surgeries, then 
follow with ( v -  1 )-dimensional ones, and so on. 

Let us introduce the intermediate operators 

s '2  l:IgIQw ,,Ak,, j = 0  ..... v, = S/~ Sr (6.19) 
k - j  ~ k  

( j )  (J) ^ We begin by obtaining a rough estimate on (p = Sr ~,. Namely, let us 
show that for all j = 0 ..... v 

0 I j) <~ Bc (6.20) 

with B from (6.5). The bound (6.20) is rough because it cannot be 
improved only in the vicinity of (Vc~ #l;')w t [-see the second line in (6.7)]. 

To see (6.20), we first estimate from above the number of points in 
~?Wk,i (for any k, i) by ( d o + R )  v, where we put R = 2 r +  1 in order to sim- 
plify the notations. Hence, by definition (6.2) and P1 it follows that if 
f ( s )  <~ a, s �9 V, then 

~K(do + R) v, s �9 Wkj 
( Swk'~'AkJ)(S) <~ [ a, S �9 ( / \  Wk,i (6.21 ) 

But any point s � 9  l~ is at most in one Wk,~ for any given k (see P2). Hence, 
by (6.19), we have for all j =  0,..., v 

10(j)(s)l << B~l + 1 Jc <<. Bc (6.22) 

where 
B~ = K(do + R) v (6.23) 

In the same way the estimate (6.25) can be checked: let i , j  be fixed, 
W =  Wj,~, A = Aj,~, and suppose that 

(p(J+ I)(S) ~ O~ 
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(where ~b ~'+ l)___ q~) provided s is in 

n( A ) = {s e 0 W: dist(s, A ) <~ do/3V ) 

Then 

with 

(6.24) 

for s in the set 

bl = K(do + R) ~ exp(-~(do/3V)) (6.26) 

Our definitions of surgeries imply also that 

~b(J)(s)=~b(J+~)(s) as long as s~ V / ?  Ws'~ (6.27) 

Now everything is ready for the inductive estimates on (b (j) to obtain. 
By (6.25) and (6.19), the function q5 (v) satisfies, in addition to (6.20), also 
the bound 

49(~(s) <~ Bcbl (6.28) 

I;'(v) = U Av,i (6.29) 
i 

[-see (6.16)]. Only the second term of (6.25) contributes to (6.28); the first 
one vanishes because the set n(Av,i) = ~ by (6.18), and so one can set ~ to 
be zero. 

The bound (6.28) on I 7"(~) when incorporated into (6.25), and using 
(6.18), results in 

~o (v ~)(s) <~ Bcbl B1 + Bcbl (6.30) 

for s~ 1 ;'(v-~), provided v - 1  >0.  Here we also have used (6.27). Iterating 
and using the bound (6.25) to estimate the function q5 ~j), j > 0, with 7 given 
by the rhs of the bound on the function q5 (j+ 1) on the set l ~(j+ 1) we arrive 
at 

~(J)(s)<~Bcbl(l + B 1 + ' ' '  + B~ J) (6.31) 

for s ~ I ~s~. 
At a last step one has to invoke condition P5 to bound the function 

~b ~~ Because [0Woj[ ~< (do + R) v, we have, using the already proven bound 
on ~b (1), that 

~~ Bcb~(B1 + "'" + B~) <~ bc (6.32) 

~o(J)(s)~Bl  + Bcbl for s ~ A  (6.25) 
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for s e l 2  (~ which, together with (6.17), proves (6.14), because 
B[ + B~ 1+ ... + Bl 4 vB an d 

S~(p = q3 (~ (6.33) 

We are left with the presentation of the patterns with properties P1-P5. 
Let L be the cube in R *, centered at the origin, of the size do + R, 

oriented according to the coordinate axes. Let 5r be a covering of B2 v 
generated by shifts of L by the vectors from the sublattice (do + R) 7/~. First, 
we present families J//k of parallelepipeds, or boxes, in R ~, k = 0 ..... v. The 
family J//e is formed by "almost k-dimensional" boxes. Their centers are 
those of (all) k-dimensional faces of cubes forming the covering 5 ~ If x is 
such a center and F(x) the corresponding k-dimensional face, then all the 
sides of the box He(x) ~ Jge centered at x are parallel to the axes; these that 
are parallel to the face F(x) have the length 

do - (v - k ) ( R  + 2do /3V)  (6.34) 

while the rest have length equal to 

(v - k)(R + 2do/3V) (6.35) 

From (6.34) and (6.35) and since do>6v(r+ 1)>3vR [see (4.1)] 

dist(He(x ') ~ Z", He(x ") ~ y_v) >1 R > r (6.36) 

for all k, x ' r  x". 
Let x be the center of a k-dimensional face F(x) of a cube from 5~. 

Denote by Xtn(x) ,  l>k ,  the set of all centers of all/-dimensional faces of 
the cubes from 5 ~ which faces contain the face F(x). By definition, the 
nonempty intersection Hk(x) n 17 belongs to ~Kk iff 

{ [ n e ( x )  a 2 v] w a , [ n k ( x )  n 7z ~3 } a l - (v \  r2) u f3 = 

{ [ n ' ( y )  a z v] u e r [ g ' ( y )  a ~"]  } a [ ( V \  P) u t] = 
(6.37) 

for all y e  UI>~ cf~~ �9 
To define the subvolumes Ak.ic Wk.i, let H k ( x ) ~ / k  and let F(x) be 

the corresponding k-dimensional face. The intersection Hk(x)n  F(x) is a 
"real" k-dimensional box. Let it be denoted by/ )k(x) ,  and let ~?/Tk(x) be its 
boundary. We define the "(k-1)-dimensional" boundary c3 (e ~)He(x) of 
"k-dimensional" box He(x), k>  0, to be the set of the points of its true 
boundary that belong to those faces of this box He(x) that contain the 
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points  of OffIk(x). F o r  example ,  for k = v ,  c?(v-1)=~?. We define the sub- 
volume Ak,i for the pa t t e rn  Wk,i = Hk(x)  c~ 12, k > O, i = i(x), by 

Ak,i = { s t  Wk,i: dist(s,  (O(k-l)Hk(x)c~Z~))>~do/3V } (6.38) 

(keeping in mind  that  Ao, i= Wo,~). 
The  p rope r ty  P I  follows by defini t ion of the pa t te rns  [see (6.37)] ,  

while P2 follows f rom (6.36). 
To prove  P3 one has to show first by  induc t ion  in k (beginning with 

k =  v in decreas ing order,  to k = 0 )  tha t  the subsets Vk ~ l? of  poin ts  s 
defined by:  

(i) the distances between s and  all ( k - 1 ) - d i m e n s i o n a l  faces F of 
cubes of 5 ~ are greater  than  ( v -  k ) (R/2  + do/3V) 

(ii) there exist j>~k, i such that  s e A j ,  i a  Wj,~e~g/)j, j<~ v 

are in ~'~, k = 0,..., v. No te  that,  by definit ion,  ( - 1 ) - d i m e n s i o n a l  face F 1 
is empty,  and  dist(s,  ~ ) =  +oo.  I t  remains  to observe tha t  the subsets  
V k c I) of points  s defined by (i) above  and by 

(i i ' )  dist(s,  ( V \ V ) w t ) > D  

belong to Vk, k = 0,..., v. 
The condi t ions  P4 and P5 follow s t ra ightforwardly .  
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